AB/BC 2

t (hours)	0	2	5	7	8
<i>E</i> (<i>t</i>) (hundreds of entries)	0	4	13	21	23

(a)
$$E(6) \approx \frac{E(7) - E(5)}{7 - 5} = \frac{21 - 13}{2} = 4 \frac{hundred entries}{hour}$$

(b)
$$\frac{1}{8}\int_{0}^{8} E(t)dt \approx \frac{1}{8} \left[\frac{1}{2}(2)(0+4) + \frac{1}{2}(3)(4+13) + \frac{1}{2}(2)(13+21) + \frac{1}{2}(1)(21+23) \right] =$$

10.6875 or 10.688

This approximates the average number of entries (in hundreds) in the box from noon until 8pm.

(c) Entries processed:
$$P(t) = t^3 - 30t^2 + 298t - 976$$
 $\frac{hundreds of entries}{hour}$ for $8 \le t \le 12$

Number of entries not yet processed at midnight is the number of entries at 8pm minus the number processed from 8pm until midnight:

$$E(8) - \int_{8}^{12} P(t)dt = 23 - 16 = \boxed{7 \text{ hundred entries}}$$

(d) The entries were processed most quickly at the absolute maximum of P(t) on $8 \le t \le 12$ which will occur at t = 8, or t = 12, or at some critical point of *P* on the interval.

$$P'(t) = 3t^2 - 60t + 298 = 0 \implies t = 9.184 \text{ and } 10.817$$

$$P(8) = 0$$
, $P(9.184) = 5.089$, $P(10.817) = 2.911$, $P(12) = 8$

Hence, the entries were processed most quickly at t = 12 or midnight