
"MR. CALCULUS" ANSWERS TO THE 2010 FORM B FREE RESPONSE QUESTIONS

AB/BC 3

1	t	0	2	4	6	8	10	12
	P(t)	0	46	53	57	60	62	63

At t = 0, the pool contains 1000 ft^3 of water. Water pumped in at $P(t) \frac{ft^3}{hour}$. Water leaking out at $R(t) = 25e^{-0.05t} \frac{ft^3}{hour}$.

(a) The midpoint Riemann sum is $4P(2) + 4P(6) + 4P(10) = 4 \cdot (46 + 57 + 62) = 660 \text{ } ft^3$

- (b) The amount of water leaked out = $\int_{0}^{12} R(t) dt \approx \boxed{224.594 ft^3}$
- (c) Volume = the initial amount plus the amount added less the amount leaked out. So, the volume $\approx 1000 + 660 - 225.594 = 1434.406 \approx 1434 \text{ ft}^3$
- (d) Let V(t) be the volume of water in the pool at time *t*. The volume of water in the pool is increasing at time t = 8 at V'(8).

$$V'(8) = P(8) - R(8) \approx 60 - 16.758 = 43.242 \frac{ft^3}{hour}$$

$$V = \pi r^2 h = 144\pi h, \text{ so } V'(t) = 144\pi \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{V'(t)}{144\pi}.$$
 Therefore,
$$\frac{dh}{dt}\Big|_{t=8} \approx \frac{43.242}{144\pi} \approx \boxed{0.096\frac{ft}{hour}}$$