

 $g(x) = \int_{-3}^{x} f(t) dt \implies g'(x) = f(x)$ So this is also the graph of g'(x).

(a)
$$g(3) = \int_{-3}^{3} f(t) dt = \int_{-3}^{2} f(t) dt + \int_{2}^{3} f(t) dt = \left[\frac{1}{2}(5)(4) - \frac{1}{2}(1)(2)\right] = 9$$

(The area of the 2*nd* triangle is subtracted since it is below the *x*-axis.)
(b) *g* is increasing when *g*' or $f > 0 \Rightarrow -5 < x < 2$
g is concave down when *g*" or $f' < 0 \Rightarrow g'$ or *f* is decreasing $\Rightarrow -5 < x < -3$ and $0 < x < 4$
Both occur when $\boxed{-5 < x < -3 \text{ and } 0 < x < 2}$
(c)
 $h(x) = \frac{g(x)}{5x} \Rightarrow h'(x) = \frac{5xg'(x) - 5g(x)}{25x^2}$ using the quotient rule
 $h'(3) = \frac{5(3)g'(3) - 5g(3)}{25(9)} = \frac{15f(3) - 5(9)}{25(9)} = \boxed{\frac{15(-2) - 5(9)}{25(9)}} = -\frac{1}{3}$
(d)
 $p(x) = f(x^2 - x) \Rightarrow p'(x) = (2x - 1)f'(x^2 - x)$
The slope of the tangent line to *p* at *x* = -1 is
 $p'(-1) = (2(-1) - 1)f'((-1)^2 - (-1)) = (-3)f'(2) = \boxed{(-3)(\frac{-4 - 4}{4 - 0})} = 6$