2014 AB/BC #1 (calculator active)

Amount of grass clippings remaining in a bin is $A(t) = 6.687 (0.931)^t$ for $0 \le t \le 30$

(a) Average rate of change of $A(t)$ on that interval is
$\frac{1}{30-0} \int_0^{30} A'(t) dt = \frac{1}{30} \left(A(30) - A(0) \right) \approx \boxed{-0.1968024044 \frac{\text{lb}}{\text{day}}} -0.197 \frac{\text{lb}}{\text{day}}$
(b) Using your calculator, $A'(15) \approx -0.1635905805 - 0.164$
This means that the grass clippings are decomposing at a rate of $0.164 \frac{\text{lb}}{\text{day}}$
on day 15.
(c) Find t when $A(t) = \frac{1}{30-0} \int_0^{30} A(t) dt \implies t \approx \boxed{12.414774 \text{ days}} 12.415 \text{ days}$
Solve this with your calculator. One way is to get the expression equal to 0 and enter it in your calculator as Y_1 and find the zeros between 0 and 30.
(d) Tangent line approximation (linearization) for $A(t)$ when $t > 30$.
$y - y_1 = f'(x)(x - x_1)$ becomes $A(t) - A(30) = A'(30)(t - 30)$
or $A(t) = A(30) + A'(30)(t - 30)$
Now, find t when $A(30) = 0.5$
$A(t) = 0.5 + A'(30)(t-30) \implies \text{Set equal to } 0 \text{ and solve: } 0.5 + A'(30)(t-30) - A(t) = 0$
$t \approx 35.05443 \text{ days}$ 35.054 days