2014 AB/BC #4 (no calculator)

t (minutes)	0	2	5	8	12
$v_A(t)$ (meters/minute)	0	100	40	-120	-150

(a) Average acceleration on
$$[2,8] = \frac{1}{8-2} \int_{2}^{8} v'(t) dt = \frac{1}{6} (v(8) - v(2)) = \left[\frac{1}{6} (-120 - 100)\right] = -\frac{110}{3} \frac{m}{min^2}$$

(b) Yes $v_A(t) = -100$ for some $t \in (5,8)$.
Since $v_A(t)$ is differentiable, then it is continuous on the interval.
Therefore the Intermediate Value Theorem guarantees that because -100 is
between 40 and -120 , there exists a t between 5 and 8 where $v_A(t) = -100$.
(c) $\int_{2}^{12} v(t) dt = x(12) - x(2) \Rightarrow x(12) = x(2) + \int_{2}^{12} v(t) dt = \left[\frac{300 + \int_{2}^{12} v(t) dt}{1}\right]$
Using a trapezoidal approximation for the definite integral:
 $x(12) \approx \left[\frac{300 + \frac{1}{2}(5 - 2)(100 + 40) + \frac{1}{2}(8 - 5)(40 - 120) + \frac{1}{2}(12 - 8)(-150 - 120)\right]$
 $= -150$ meters west of the Origin station
(d) Train A is traveling $x_A(t)$ meters east and train B is traveling $y_B(t)$ meters north, so
the distance between them is the hypotenuse, $z(t)$, of a right triangle and
 $v_B(t) = y'_B(t) = -5t^2 + 60t + 25$. We are to find the rate that $z(t)$ is changing at time
 $t = 2$, or $z'(2)$.
 $z^2(t) = x_A^2(t) + y_B^2(t) \Rightarrow \text{ so } z(2) = 500$ and, taking the derivative \Rightarrow
 $2z(t)z'(t) = 2x_A(t)x'_A(t) + 2y_B(t)y'_B(t) = 2x_A(t)v_A(t) + 2y_B(t)v_B(t)$
 $z(2)z'(2) = x_A(2)v_A(2) + y_B(2)v_B(2) \Rightarrow$
 $z'(2) = \left[\frac{300(100) + 400[-5(2)^2 + 60(2) + 25]}{500}\right] = 160 \frac{m}{min}$