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(a) Using the Ratio test: 
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      The root test would have worked here also. 
 
(b)  Taking the derivative of f (x) above: 
 

     

 

f '(x) = 2 − 22 x −1( )1 + 23 x −1( )2 −!

general term = (−1)n+12n x −1( )n−1
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(c)   

     

Since  f '  is geometric, then f ' = a1

1− r
 where the first term, a1 = 2 and 

the common ratio, r = −2(x −1).  So f '(x) = 2
1− −2(x −1)( ) = 2

2x −1

Now, f (x) = 2
2x −1

dx = ln 2x −1 +C∫   ⇒

Since f (1) = 0 (in the original series above),  0 = 0 +C⇒C = 0

and absolute value can be removed - since R = 1
2

,  then 1
2
< x < 3

2
and 2x −1> 0 on this interval.

So, f (x) = ln 2x −1( )
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∑  for x −1 < R where R is the radius of convergence
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